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Abstract

People are often able to reliably detect a mixture of 2 or more odorants, even if they cannot reliably detect the individual
mixture components when presented individually. This phenomenon has been called mixture agonism. However, for some
mixtures, agonism among mixture components is greater in barely detectable mixtures than in more easily detectable mixtures
(level dependence). Most studies that have used rigorous methods have focused on simple, 2-component (binary) mixtures.
The current work takes the next logical step to study detection of 3-component (ternary) mixtures. Psychometric functions were
measured for 5 unmixed compounds and for 3 ternary mixtures of these compounds (2 of 5, forced-choice method).
Experimenters used air dilution olfactometry to precisely control the duration and concentration of stimuli and used gas
chromatography/mass spectrometry to verify vapor-phase concentrations. For 2 of the 3 mixtures, agonism was approximately
additive in general agreement with similar work on binary mixtures. A third mixture was no more detectable than the most
detectable component, demonstrating a lack of agonism. None of the 3 mixtures showed evidence of level dependence.
Agonism may be common in ternary mixtures, but general rules of mixture interaction have yet to emerge. For now, detection
of any mixture must be measured empirically.
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Introduction

Detection of odors by humans has both basic and applied sig-

nificance in clinical investigations, environmental and occupa-

tional exposure, olfactory genetics, neuroscience, food science,

and cross-species comparisons (Wysocki and Beauchamp

1984; Lawless and Heyman 1998; Laska et al. 2003; Cain

et al. 2007; Lötsch et al. 2007; Menashe et al. 2007; Rosenfeld
et al. 2007). Detection of mixtures is particularly important

because most natural odorants are comprised of more than

one compound. Unfortunately, relatively few studies on

human odor detection have focused on mixtures.

The majority of work on odor mixtures has focused on

perceived intensity of suprathreshold (clearly detectable)

mixtures. Excellent discussions of models of suprathreshold

mixture interactions are available (e.g., Laffort et al. 1989;
Cain et al. 1995; Thomas-Danguin and Chastrette 2002).

The current work will focus on detection of odor mixtures

in the perithreshold range.

The basic rules that govern detection of odor mixtures re-

main unclear, but some generalities have emerged regarding

detection of mixtures of perithreshold odors. Concentrations

of individual compounds in threshold-level mixtures tend to

be lower than thresholds for the corresponding compounds

when presented alone, a phenomenon sometimes referred to
as agonism (Rosen et al. 1962; Baker 1963; Guadagni et al.

1963; Laska and Hudson 1991; Patterson et al. 1993;

Cometto-Muñiz et al. 1997). Degree of agonism is commonly

assessed with respect to a specific model of additivity, such as

dose addition or probability summation (Cometto-Muñiz

et al. 2003; Wise et al. 2007; Miyazawa et al. 2008; also

seeMaterials andmethods). Approximately additive interac-

tions are common, but subadditivity (agonism, but detection
performance that falls below the predictions of additivity

models) and synergy (detection performance that exceeds

the predictions of additivity models) have also been observed
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(Wise et al. 2007; Miyazawa et al. 2008). Antagonism, in

which a mixture would be less detectable than the most

detectable component, remains plausible (see Spehr et al.

2004; Brodin et al. 2009).

Methodological limitations make it difficult to determine

whether much of the observed variation in degree of agonism

is meaningful. The rigor of stimulus control has seldom been

clear, and most of the earlier studies did not verify stimulus

concentrations in the vapor phase. Furthermore, most stud-

ies only estimated thresholds, so detailed analyses of mixture

interactions across a range of concentrations have seldom

been possible.

Recent studies of binary (2-component) mixtures have

overcome some of these limitations. Cometto-Muñiz et al.

(1999, 2003, 2005) measured vapor-phase concentrations

of stimuli and measured complete psychometric functions

for single (unmixed) compounds. Psychometric functions

for unmixed compounds were used to formulate binary mix-

tures with different levels of predicted detection perfor-

mance. As in earlier studies, agonism occurred. However,

mixtures below the level typically defined as threshold

(but detected at greater than chance level) showed a greater

degree of agonism than mixtures that were above threshold

(but detected <100% of the time). In short, level dependence

occurred. Other studies of binary mixtures using rigorous

methods not only yielded evidence for both agonism and

level dependence but also found that level dependence does

not occur for all binary mixtures and that mixture interac-

tions may be related to the molecular properties of the com-

ponents (Wise et al. 2007; Miyazawa et al. 2008).
This work on binary mixtures constitutes a logical first

step, but natural odors are often comprised of many constit-

uent chemicals (Nijssen et al. 1996). Furthermore, some

work on the perception of suprathreshold odor mixtures sug-

gests that interactions in complex mixtures may not always

be easy to predict based on interactions in simple mixtures

(Moskowitz and Barbe 1977; Laing et al. 1994; Wagner et al.

2006; Brossard et al. 2007). To understand the detection of

natural odors, we must also study complex mixtures.
Here, we extend a recent series of studies on binary mixtures

in the perithreshold range (Wise et al. 2007; Miyazawa et al.

2008) to ternary (3-component) mixtures. To the best of our

knowledge, these experiments constitute the first work on de-

tection of ternary mixtures in the perithreshold range that

combines precise stimulus control via air dilution olfactome-

try, vapor-phase calibration of stimuli, and measurement of

full detection functions using rigorous psychophysical meth-

ods. Psychometric functions were measured for 5 unmixed

compounds and for 3 ternary mixtures of those compounds

(see Materials, below). One basic question was whether

clear agonism occurs in these more complex mixtures and

whether degree of agonism varies greatly between mixtures.

Another basic question was whether patterns of mixture in-

teraction would depend on overall concentration (whether

agonism would differ between the low and high perithreshold

levels for a given mixture).

Materials and methods

Subjects

Twelve healthy, nonsmoking adults (7 females) participated.

Ages ranged from 22 to 47. Most were employees of the

Monell Chemical Senses Center. Other subjects came from

the local community. Both employees and outside subjects

provided written informed consent on forms approved by

the Independent Review Board of the University of Pennsyl-

vania and were financially compensated. All subjects had
participated in several experiments using the same proce-

dures and apparatus, so had extensive practice. Previous

experiments had also demonstrated that the subjects were

able to detect the compounds to be used (see Materials,

below) within the range of concentrations used.

Materials

Stimuli included: acetic acid (CAS# 64-19-7; Nagase Chem-

teX Corporation, 99.7% pure), butyric acid (CAS# 107-92-6;

Daicel Chemical Industries, Ltd, 99.6% pure), hexanoic acid

(CAS# 142-62-1; Chisso Corporation, 98.5% pure), octanoic

acid (CAS# 124-07-2; Inoue Perfumery Co., Ltd, 97.3%

pure), and 2-hydroxy-3-methyl-2-cyclopentene-1-one (called
maple lactone [ML]; CAS# 80-71-7; Toyotama International

Inc., 98.3% pure). Manufacturer claims regarding purity

were verified using gas chromatography/mass spectrometry

(GC/MS). Regardless, it remains possible (though unlikely)

that some trace compounds might have influenced the

results.

Subjects received a 6-step dilution series of each unmixed

compound (Table 1). Successive concentration steps differed
by a factor of about 2.2. Extensive pilot work suggested that

the range of concentrations would span a wide range of

detection performance for most subjects, with comparable

levels of detection at a given step across compounds.

In addition, subjects received a 6-step dilution series of

each of 3 binary mixtures. One mixture (C2 + C4 + C6) in-

cluded acetic, butyric, and hexanoic acids, closely related

compounds which share the same functional group and dif-
fer only in the number of methylene units in the base chain

(Figure 1). In a second mixture (C2 + C4 + C8), hexanoic acid

was replaced with octanoic acid to achieve slightly more

structural diversity. In the third mixture (C2 + C4 + ML),

hexanoic acid was replaced with ML, which is dissimilar

to the acids in both structure and suprathreshold odor char-

acter. These ternary mixtures do not allow a thorough

structure-activity study. However, manipulating structural
similarity within mixtures qualifies as a logical approach

to diversify our stimuli in this initial investigation of ternary

mixtures.
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Concentrations of all compounds were the same in ternary

mixtures as when presented alone. For example, the lowest

concentration step of C2 + C4 + C6 consisted of the lowest

concentration step of C2, the lowest step of C4, and the

lowest step of C6. Thus, the concentration ratios of the
3 compounds remained the same as overall concentration

of the mixture increased.

Though quality was not systematically examined for any of

the stimuli, quality seemed rather indistinct at the perithres-

hold concentrations at which the single compounds and

mixtures were presented. At suprathreshold levels, acetic

acid smells like vinegar. Butyric acid smells like rancid fat

and is an important note in blue cheese aroma. Hexanoic
acid has been described as ‘‘goat like,’’ with a rancid fat note.

Octanoic acid also has a rancid fat note.ML is quite different

in quality from the carboxylic acids, with a sweet, ‘‘maple

syrup’’ aroma.

Olfactometer and calibration

Stimuli were presented using an automated air dilution olfac-

tometer. Nitrogen flowed through odor vessels containing

pure chemicals (powdered ML was diluted with MilliQ-

filtered water at 0.01 g/mL before being placed in an odor
vessel). Odorized nitrogen was mixed with filtered air to cre-

ate a 6-step dilution series of each stimulus. Chemical mix-

tures were formed in vapor phase, that is, by combining

nitrogen streams from 3 separate odor vessels, before subse-

quent air dilution. All concentrations were generated contin-

uously and vented out of the room when not presented to

subjects. Electronic valves could gate any of the 6 concentra-

tions, or a clean air blank, to a glass cone. Subjects sampled
by placing their noses in the cone and sniffing naturally. The

olfactometer provided a total flow of 30 L/min at output to

allow subjects to sniff without inhaling room air.

Samples were collected at the output of the olfactometer in

Tedlar bags. Samples were quantified using GC/MS. Solid

phase micro extraction (SPME) was used to enhance analyt-

ical sensitivity. SPME fibers were extended into sample bags

for 45 min. After 45 min of collection, the compounds were
desorbed in the injection port of the GC/MS system. A liquid

dilution series of each compound (in chloroform) provided

standards to convert GC area to parts per million (ppm; by

mass). Liquid standards were injected into Tedlar bags

filled with nitrogen and allowed to evaporate in the bags

overnight. The resulting gas-phase standards were sampled

using SPME fibers, with the same procedure used to quantify

samples from the olfactometer.
A detailed description of the design and calibration of

the olfactometer is available in Supplementary material.

Calibration yielded 3 important results with respect to inter-

pretation of the psychophysical data. First, 2.2-fold air dilu-

tions in the olfactometer produced 2.2-fold drops in ppm.

Second, concentrations were stable, both within and between

days. Third, concentrations for a given single compound

precisely matched concentrations of that compound when
presented in a ternary mixture.

Procedure

Subjects received 2 identical odors and 3 clean air blanks, in

random order, during each trail (2 of 5, forced-choice

procedure). The 5 samples consisted of 2.5 s odor pulses,

Table 1 Concentrations of stimuli, log ppm by mass (log mg/m3 in parentheses)

Compound

Step C2 C4 C6 C8 ML

1 �2.86 (�2.78) �4.43 (�4.35) �3.46 (�3.38) �3.27 (�3.19) �3.00 (�2.92)

2 �2.51 (�2.43) �3.99 (�3.91) �3.11 (�3.03) �2.93 (�2.85) �2.67 (�2.59)

3 �2.17 (�2.09) �3.63 (�3.55) �2.76 (�2.68) �2.60 (�2.52) �2.35 (�2.27)

4 �1.82 (�1.74) �3.28 (�3.20) �2.41 (�2.33) �2.27 (�2.19) �2.02 (�1.94)

5 �1.47 (�1.39) �2.93 (�2.85) �2.06 (�1.98) �1.94 (�1.86) �1.70 (�1.62)

6 �1.12 (�1.04) �2.58 (�2.50) �1.71 (�1.63) �1.60 (�1.52) �1.37 (�1.29)
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Figure 1 Molecular structures of the odor materials used in the
experiment.
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with 3 s pauses between pulses. During each pulse, a virtual

light on a computer screen lit up under a particular label

(‘‘Sample 1,’’ ‘‘Sample 2,’’ etc.). In addition, a continuous

beep accompanied each odor pulse. Subjects could flag each

sample as a possible odor by clicking on virtual buttons next
to the corresponding label. A mouse click changed the color

of a button from green to red and changed text on the button

from ‘‘blank’’ to ‘‘odor.’’ The number of samples that sub-

jects could flag as odors was not limited during this initial

presentation of the 5 samples.

After the 5 samples were presented, a second screen ap-

peared. The second screen showed a pair of virtual buttons

next to each sample label. One button was used to enter re-
sponses. The initial states of the response buttons (odor or

blank) were set according to the responses during the initial

presentation of the 5 samples. The other button next to each

label triggered a 2.5 s pulse of the sample in question, so that

subjects could resample the 5 stimuli. Subjects were allowed

to resample until they were satisfied with their responses. Pi-

lot work had shown that resampling improved detection, so

resampling was used to help optimize detection.
Subjects knew that exactly 2 of the 5 stimuli presented each

trial were odors. Subjects were required to identify exactly 2

samples as odors, guessing if uncertain. Subject entered their

final responses by clicking a virtual ‘‘enter’’ button, and the

experimental program would not accept a final response un-

less exactly 2 samples were flagged as odors. A response

counted as correct only if the subject identified both odors.

At least 15 s elapsed between trials.
During an experimental session of about 40min, subjects re-

ceived 6 presentations of each of 6 concentrations (see Table 1)

of a fixed stimulus. The stimulus could be either a pure

compoundor a ternarymixture (formore detail, seeMaterials,

above). Stimuli were presented in blocked, ascending order of

concentration. Subjects received the lowest concentration on

the first 3 trials, the next lowest in the next 3 trials, and so forth

up to the highest concentration.After a break of at least 5min,
the sequence was repeated, again starting with the lowest con-

centration. Subjects received each ternary mixture and each

single compound in 2 sessions, for a total of 12 trials per con-

dition. The 5 unmixed compounds and 3 ternary mixtures (8

stimuli in total) were tested in blocked, mostly random order

(subjects needed to reschedule sessions on occasion, so order

was not purely random).

Data analysis

First, data from the 2 replicate sessions for each stimulus

condition were pooled to estimate proportion correct (pcorr)

for each for each subject in each stimulus condition. Next,

a correction for chance (pcorr expected if subjects simply

guess) was applied: Chance-corrected pcorr = (pcorr –

0.10)/(1 – 0.10). This transform converts chance-level perfor-

mance (10% correct) to 0.0 and perfect performance (100%

correct) to 1.0, with intermediate values falling between.

Next, values of £0.0 were converted to 0.005, and values

of 1.0 were converted to 0.995 to accommodate a log-odds

ratio transform, for which input values of 0 and 1 are unde-

fined (Macmillan and Creelman 1991). The log-odds ratio

transform follows: log odds = ln[p/(1 – p)], where p represents
chance-corrected pcorr and ln indicates natural log. We

chose this transform because pilot work showed that cumu-

lative logistic functions fit detection data better than other

sigmoidal functions. Finally, the log-odds ratio of chance-

corrected proportion was averaged across subjects for each

compound and concentration and plotted against log con-

centration to form psychometric functions. Transformation

made psychometric functions approximately linear, so func-
tions could be fit using least-squares linear regression.

Patterns of mixture interaction were compared with prob-

ability summation, that is, the assumption that detecting

a ternary mixture equals the probability of detecting one

or more of the mixture components: p(ABC) = p(A) +

p(B) + p(C) – p(A)p(B) – p(A)p(C) – p(B)p(C) + p(A)p(B)p(C),

where p(ABC) represents the predicted probability of detect-

ing a ternary mixture, p(A) represents the observed probabil-
ity of detecting component A, P(B) represents the observed

probability of detecting component B, and p(C) represents

the observed probability of detecting component C (Feller

1968). Within the framework of the model, if detection

performance for the mixture falls below probability summa-

tion, some degree of suppression has occurred relative to sta-

tistical independence. If performance falls above probability

summation, then some form of mutual enhancement, or
synergy, has occurred.

All analyses were conducted using Statistica software (Ver-

sion 8.0, Statsoft). Linear (least-squares) regression was used

to fit to single-compound psychometric functions for indi-

vidual subjects. These linear fits in turn were used to generate

individual predictions of probability summation for each

ternary mixture. Repeated measures analysis of variance

(ANOVA) models were used to compare psychometric func-
tions for mixtures to psychometric functions for unmixed

compounds. Repeated measure ANOVA models were also

used to compare probability summation predictions to ob-

served psychometric functions for ternary mixtures. Initial

analyses indicated that some violations of the sphericity oc-

curred, so both univariate analyses with corrected degrees of

freedom (Greenhouse and Geisser 1959) and multivariate

(multivariate analysis of variance [MANOVA], Wilk’s test)
analyses (Gill 2001)were conducted. Because both approaches

supportedthe sameconclusions,weonly report theMANOVA

results below (significance criterion of P < 0.05).

Results

Psychometric functions for unmixed compounds

pcorr increased smoothly with concentration, with good

linear fits in the coordinate space used (R2 ranged from
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0.97 to 0.99, see Figure 2). For linear fits to data from

individual subjects, R2 values ranged from 0.51 to 0.99

(mean = 0.80, standard deviation = 0.17). In short, cumula-

tive logistic functions fit the data reasonably well. For aver-

age data, detection of all compounds rose from near chance
to essentially perfect with an increase in concentration of 1.7

log units (50-fold increase). Slopes of psychometric functions

were relatively similar across compounds: In a concentration

step · compound ANOVA, the interaction failed to reach

significance (P > 0.88). Thresholds, that is, the concentra-

tions that would lead to detection performance halfway be-

tween chance level and 100% correct are: –1.96 log ppm by

mass (–1.88 log mg/m3) for C2, –3.52 log ppm (–3.44 log
mg/m3) for C4, –2.61 log ppm (–2.53 log mg/m3) for C6,

–2.40 log ppm (–2.32 log mg/m3) for C8, and –2.20

log ppm (–2.12 log mg/m3) for ML.

Detection of ternary mixtures compared with detection of

single mixture-components

For C2 +C4 +C6 and C2 + C4 +ML, detection of ternary mix-

tures exceededdetectionof the individualmixture components

(Figure3).ForC2+C4+C8,detectionoftheternarymixturewas

approximately equal to detection of the individual mixture

components. Two-way ANOVAs (concentration · mixture

condition) that compared detection functions for individual

mixture components with corresponding functions for

ternary mixtures confirmed these impressions. For C2 + C4

+C6, the detection function for the ternarymixture exceeded

the function for C2 (F1,11 = 42.32, P << 0.001), exceeded the

function for C4 (F1,11 = 7.61, P < 0.02), and exceeded the
function for C6 (F1,11 = 38.27, P << 0.001). For C2 + C4 +

C8, the detection function for the ternarymixture failed to ex-

ceed the functions for C2, C4, and C8, to a statistically signif-

icant degree, though there were marginal trends in this

direction for C2, F1,11 = 4.58, P < 0.06, and for C8, F1,11 =

4.46, P < 0.06. For C2 + C4 + ML, the detection function

for the ternary mixture exceeded the function for C2 (F1,11

= 71.22, P << 0.001), exceeded the function for C4 (F1,11 =

11.60, P < 0.01), and exceeded the function for ML (F1,11 =

21.06, P < 0.001). Interestingly, the concentration ·mixture

condition interaction failed to reach statistical significance

(P > 0.10) for all comparisons except ML versus C2 + C4 +

ML, F5,7 = 5.26,P< 0.02. Accordingly, the analysis provides

no strong evidence for concentration dependence.

Detection of ternary mixtures compared with additivity

predictions

Detection data for all ternary mixtures, together with corre-

sponding predictions based on probability summation of de-

tection data for the unmixed components, were submitted to

an ANOVA. Predicted detection of ternary mixtures was
close to perfect for the second highest concentrations. Be-

cause our methods did not produce data precise enough

to discriminate between levels of performance near asymp-

tote, our ability to assess mixture interactions suffered from a

ceiling effect. Accordingly, data for the highest concentrations

were not analyzed. ANOVA factors follow: concentration

step (1–5) · mixture (C2 + C4 + C6, C2 + C4 + C8, C2 +

C4 +ML) · data type (observed detection for ternarymixtures
vs. predicted values).

The effect of concentration step reached significance, F4,8 =

197.17, P << 0.0001, demonstrating an expected dose-

response relationship. The effect of mixture also reached

significance, F2,10 = 9.84, P < 0.01, indicating that not all

mixtures were equally detectable overall. Perhaps the more

Figure 3 Psychometric functions for ternary mixtures (filled squares) and single compounds (open diamonds for C2, open squares for C4, open triangles for
the third mixture component). y axis: log-odds ratio of chance-corrected pcorr and x axis: concentration step (2.2-fold dilutions, where the proportions of the
3 compounds in each mixture remain the same as concentration increases). Lines (solid for mixtures, dashed or dotted for single compounds) represent linear
fits (least-squares regression). Error bars omitted for clarity (error bars for these functions appear in Figures 2 and 4).

Figure 2 Psychometric functions for single (unmixed) compounds. y axis:
the log-odds ratio of chance-corrected pcorr. x axis: stimulus concentration
in log ppm (by mass). The lines represent best-fit linear functions (least-
squares regression). The functions for ML and octanoic acid (C8) are
depicted on a separate graph for clarity.
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interesting result is a significant interaction between mixture
and data type, F2,10 = 4.25, P < 0.05, which indicates that

some mixtures match additivity predictions better than

others. Other effects failed to reach statistical significance.

Inspection of the observed and predicted psychometric

functions for ternary mixtures suggests that detection for

C2 + C4 + C6 and C2 + C4 + ML matched predictions quite

well but that detection of C2 + C4 + C8 was uniformly lower

than predicted (Figure 4).
Simple concentration · data versus model ANOVAs for

individual mixtures confirmed these impressions. For C2 +

C4 +C6, both the main effect of data type and the interaction

with concentration failed to reach significance (P > 0.30).

The same was true for C2 + C4 + ML (P = 0.37). In contrast,

for C2 + C4 + C8, the main effect of data type reached sig-

nificance, F1,11 = 12.55, P < 0.01; the interaction with con-

centration failed to reach significance (P > 0.76). Thus,
the analysis provided no evidence that detection of C2 +

C4 + C6 or C2 + C4 + ML deviated from response addition

at any of the measured concentrations but did provide evi-

dence that C2 + C4 + C8 showed general (nonconcentration

dependent) suppression with respect to response addition.

Discussion

Agonism among mixture components

For 2 of 3 ternary mixtures, clear agonism occurred such that

mixtures were easier to detect than individual components.
This finding is in good general agreement with a growing

body of literature showing that concentrations of individual

chemicals in a threshold-level mixture tend to fall below

individual threshold concentrations (e.g., Rosen et al.

1962; Baker 1963; Guadagni et al. 1963; Laska and Hudson

1991; Patterson et al. 1993; Cometto-Muñiz et al. 1997, 2003,

2005; Wise et al. 2007; Miyazawa et al. 2008).

Agonism among mixture components also occurs in detec-
tion of perithreshold tastes (Stevens 1998). It seems that both

chemosensory modalities can function as general detectors

of ambient chemicals, at least to some extent. Detector

systems that integrate across chemicals could enhance our
ability to detect weak signals, at the possible expense of

discrimination among compounds. At suprathreshold levels,

mutual suppression among mixture components appears to

be the general rule for olfaction and often holds even when

one accounts for the compressive nature of psychophysical

functions (Berglund et al. 1973; Cain 1975; Laing et al. 1984;

Cain et al. 1995; Laing 1995; Lawless 1997). Because lateral

inhibition in the brain can sharpen the chemical specificity of
odor-responsive neurons (Mori and Shepherd 1994; Yokoi

et al. 1995; Mori et al. 1999), the olfactory system may sac-

rifice sensitivity for enhanced discrimination once absolute

detection becomes less of a challenge.

From a practical standpoint, mixture agonism has impli-

cations for indoor air quality, where analytical studies could

fail to find problematic concentrations of any single chemical

in air samples taken from clearly problematic environments,
as has been discussed for chemical irritation (Schiffman and

Williams 2005). In a similar fashion, it could prove very

difficult to identify the source of an odor in a food, beverage,

or personal product when the target is a mixture whose com-

ponents have little or no perceptual impact on their own

(discussed in Bult et al. 2001).

Differences among mixtures in degree of agonism

The 2 mixtures that showed clear agonism conformed to ad-

ditivity predictions. However, detection of C2 + C4 + C8 fell

below the predictions of additivity. In fact, this mixture was
no more detectable than it is most detectable component,

demonstrating a complete lack of agonism. Thus, the work

has shown that additivity (and mixture agonism in general)

may serve as a useful rule of thumb but cannot describe all

interactions in detection of complex mixtures.

Interestingly, C2 + C4 + C8 was neither the mixture whose

components were the most structurally similar nor the mix-

ture whose components were the least similar. However, be-
cause both olfactory receptor neurons and cells in the brain

may respond tomolecules frommore than one chemical fam-

ily, what appears dissimilar to the eye may not be dissimilar

Figure 4 Psychometric functions for 3 ternary mixtures: Acetic, butyric, and hexanoic acids (left); acetic, butyric, and octanoic acids (middle); and acetic acid,
butyric acid, and ML (right). y axis: log-odds ratio of chance-corrected pcorr; x axis: concentration step (2.2-fold dilutions, where the proportions of the 3
compounds in each mixture remain the same as concentration increases). Filled symbols (solid lines) represent observed detection data. Open symbols (dashed
lines) represent additivity predictions based on detection functions for individual components under an assumption of probability summation. Error bars
represent � standard error of the mean.
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to the olfactory system (Araneda et al. 2000; Haddad et al.

2008). With respect to perceived quality, the longer chain

carboxylic acids share a rancid fat note and thus probably

smell more similar to each other than does the sweet, maple

odor of ML. Thus, C2 + C4 + C8 was probably not the most
qualitatively diverse odor triad either. Regardless, until

further work more fully elucidates the rules of mixture inter-

actions, detection of any given mixture must be determined

empirically.

Of course, mixtures that depart from general patterns, as

C2 + C4 + C8 appears to do, might be of special interest as

stimuli to neurophysiologists. These and similar experiments

can provide stimulus sets that elicit clearly different patterns
of response in the whole organism. These data on responses

of the intact olfactory system can prove vital in the effort to

understand how patterns of interaction observed at various

levels of neural processing (e.g., Duchamp-Viret et al. 2003;

Kadohisa and Wilson 2006; Mori et al. 2006; Yoshida and

Mori 2007; Rospars et al. 2008) interact to shape perception.

The effect of concentration on degree of agonism

The first studies that combined gas-phase calibration of

stimuli and intensive psychophysical methods to examine

mixture detection at different concentrations, using binary

mixtures as model stimuli, suggested that agonism is more

complete in the low perithreshold range than in the high peri-

threshold range (Cometto-Muñiz et al. 2003, 2005). Sub-

sequent work showed that patterns of agonism also
depended on the compounds that comprise the mixture

but found a similar pattern of level dependence for one pair

of mixtures (Wise et al. 2007). In contrast, the current study

found no evidence of level dependence. Agonism was either

additive (2 mixtures) or nonadditive (one mixture) to the

same degree across the full range of concentrations studied.

Further studies, using additional model mixtures, can test

the hypothesis that level dependence does not hold for more
complex mixtures. If level dependence does not occur in

more complex mixtures, then this result would indicate at

least one clear difference between the rules that govern de-

tection of binary mixtures and those that govern detection of

more complex mixtures.

Future directions

More studies using a wider range of compounds are needed.

Detailed structure-activity studies in which molecular prop-

erties vary systematically might yield further insights. Fur-

thermore, the current experiment included only balanced

mixtures whose components roughly matched with respect

to detection probability. Other research suggests that relative

proportion of components in mixtures can affect degree
of agonism (Miyazawa et al. 2008). Furthermore, use of

3-component mixtures is a logical next step beyond work on

2-component mixtures. However, to understand processing

of many natural odors, we must eventually study even more

complex mixtures.

It would also be interesting to investigate how the per-

ceived quality of mixture components is related to patterns

of mixture interaction. Of course, quality itself will be con-
strained by molecular properties, but quality can also be

shaped by learning and experience (Stevenson and Boakes

2003; Wilson and Stevenson 2003). At the suprathreshold

level, cognitive factors such as experience and processing

strategy can influence perception of mixtures (Mandairon

et al. 2006; Le Berre et al. 2008).

To the best of our knowledge, the effects of cognitive fac-

tors and experience have not been investigated in detection of
perithreshold odor mixtures. However, studies of cross-

modal integration imply that cognitive factors play a role

in how perithreshold tastes and smells cooperate to facilitate

detection (Dalton et al. 2000). Perceptually congruent stim-

uli, like sucrose and cherry odor, may cooperate whereas in-

congruent stimuli may not. Congruence may come from

learned associations between stimuli from repeated coexpo-

sure (Diamond et al. 2005). This idea is consistent with the
suggestion that strong agonism might be more likely in nat-

urally-occurring, biologically relevant odor mixtures (Laska

et al. 1990). In short, a full understanding of mixture de-

tection may require studies of not only the properties of

the stimulus but also how experience and cognitive factors

influence how the organism processes the stimulus.
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2008. Perceptual processing strategy and exposure influence the

perception of odor mixtures. Chem Senses. 33:193–199.
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